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Abstract 
Spectral imaging techniques have been well developed in the 

last ten years for art conservation science. Spectral reconstruction 
algorithms have achieved sufficiently high accuracy to predict 
specific pigments and their concentrations of each pixel on works 
of art. Digital rejuvenation can be promptly performed on works of 
art based on the pigment mapping to correct changed color or 
repaint discolored parts. In our pilot experiment, the painting was 
made of ten Gamblin artist oil paints plus white paint. A spectral 
image of the painting was derived from multi-channel camera 
signals. To overcome the difficulty of unmixing a large spectral 
image, the image was first segmented using k-Means classification 
in CIELAB color space. Within each segmented region, based on 
its colorimetric property, a subgroup of pigments was selected 
from a predefined pigment database. Pigment mapping was then 
implemented for each pixel in this segmented region with this 
subgroup of pigments based on two-constant Kubelka-Munk 
theory. By focusing on a subgroup of pigments rather than 
unmixing with the entire pigment database for each pixel, the 
computation efficiency was greatly improved. 

Introduction 
The characterization of materials constituting paintings is 

essential for the historical knowledge of the painting and for 
retouching (i.e., inpainting) the lost or damaged areas in the 
painting. Modern analytical techniques provide comprehensive 
information on the chemical composition of the materials by 
means of minute quantities taken from the objects. [1] However, 
there is a clear desire to use non-destructive methods. There are 
two main visible-spectrum noninvasive approaches: spot 
spectroscopy and imaging spectroscopy. Though spot spectroscopy 
is expected to have higher accuracy than imaging spectroscopy, it 
is only possible to measure the color at a limited number of points 
on the surface of the painting over a fixed aperture. This means 
that the measurement sites have to be selected and marked 
carefully. On the other hand, imaging spectroscopy avoids the 
difficulty by simply measuring the whole surface. With enormous 
development of imaging spectroscopy in the last ten years, the 
spectral accuracy of this technique has been improved to a great 
extent so that spectral images have been used for documentation, 
analytical assessment and digital rejuvenation. [2] Additionally, it is 
possible to identify the pigments and quantify their constituents for 
each pixel of the spectral image. [3] This paper presents further 
investigation into the potential of spectral imaging techniques for 
pigment mapping. 

Pigment mapping is of great importance for conservators to 
inpaint the lost or damaged areas of paintings. It is generally 
difficult to avoid metamerism if those areas are restored by visual 
color matching to the surrounding undamaged surface. Berns [4] 
suggested that the inpainted areas should ideally have identical 

optical (spectral, color and transparency) and geometric (gloss, 
texture and impasto) properties. In this pilot experiment, spectral 
matching, rather than conventional color matching, was achieved 
by pigment mapping. 

Reference [6] investigates the potential of multispectral 
imaging for pigment identification in paintings. It assumes that 
there are only pure pigments or mixtures of these pigments with 
either a white or black colorant. It also assumes that these mixtures 
transform the reflectance spectrum of a pigment in an approximate 
linear fashion. However, it is known that the logarithm of the 
absorption K  and scattering S ratio is the most invariant to 
changes in concentration. [4] Thus, pigment mapping should not be 
done in reflectance space, but in K S space. 

The Kubelka-Munk (K-M) theory has been widely used in the 
paint industry for over 50 years. [7,8] It is an optical model that 
establishes the relationship between surface reflectance and 
colorant formulation, layer thickness and substrate reflectance. 
References [4] and [5] applied single-constant K-M theory to 
select multiple pigments for inpainting using spot spectroscopy. 
Reference [9] used a computer-match prediction model based on 
K-M theory to select pigment recipes that give non-metameric 
matches, but only give prime attention to blue pigments.  

In this experiment, the test target was a small oil painting 
made of ten chromatic pigments and titanium white. It was 
assumed that every pixel was made of at most four pigments. 
Thus, it makes more sense to map each pixel using a subgroup 
rather than all of the pigments. The image was first segmented 
using k-Means [10] classification into five different clusters in 
CIELAB (a*b*) color space. Then, up to four pigments were 
selected to map every pixel in each cluster based on colorimetric 
information. This approach successfully and efficiently identified 
and spatially mapped pigments for each pixel in the image.  

Theory 
The general model of K-M theory can be simplified for an 

opaque surface. [8] The simplified version describes the 
relationship between the optical (spectral reflectance) and material 
properties (the ratio between absorption and scattering 
coefficients), as follows: 
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where Rλ is spectral reflectance of a surface and K S( )λ
 is the 

spectral ratio between absorption K  and scattering S . Further, for 
two-constant K-M theory, the ratio of absorption and scattering of 
a mixture sample can be expressed using the pigment 
concentration c , the number of pigments in a mixture n , the 
absorption k  and scattering s  of pigments at unit amount. The 
scattering coefficient for white paint sλ,w

 was assumed to be unity 

independent of wavelength, [8] and its absorption coefficient kλ,w
 



 

 

was equal to the ratio K S( )λ,w
, calculated using Eq. (1) from the 

reflectance measurement. 
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The unit absorption and scattering coefficients for each 
pigment can be calculated based on a pure pigment (masstone) and 
its mixture with white paint, as described by the following two 
equations, readily derived from Eq. (2).  
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The unit absorption k  and scattering s  of this pigment can 
then be deduced. 
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After the unit absorption and scattering coefficients for each 
pigment are calculated using Eqs. (5) and (6), the database has 
been completely developed. Characterization of any unknown 
mixture sample requires knowledge of both constitutes of pigments 
and their concentrations, the solutions to which demand multiple 
linear regression. This is more obvious by rewriting Eq. (2) as Eq. 
(7). [11] Assuming that some pigments in the regression model were 
more important than others, stepwise regression could be used to 
select the most important pigments that contribute to the unknown 
mixture. This regression has to be applied to each and every pixel 
using all pigments of interest. 
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In this paper, image segmentation was applied first to divide 
the entire image into several color clusters based on colorimetric 
information, with each cluster only consisting of up to four 
pigments. Compared with stepwise regression, this approach 
avoids the difficulty of iteratively selecting the pigments.  

To obtain pigment information of each pixel, optimization 
was used to minimize root-mean-square (RMS) error between 
measured and predicted spectral reflectance. It is very important to 
apply optimization in reflectance space, rather than in K/S space. It 
is because small differences in K/S space can result in large 
reflectance differences, and in turn large color differences, caused 
by the nonlinear relationship between these two spectral 
descriptions. 

Experimental 
The input device of the spectral image acquisition system is a 

Sinarback 54H digital camera that has a Kodak KAF-22000CE 
CCD with a resolution of 5440 × 4880 pixels. The camera 
employed a color-filter-array (CFA) and a filter slider with two 
customer-designed filters that improved both color and spectral 
accuracies over the production camera. [12] In each position of the 
filter wheel, a three-channel image was collected, producing six-

channel camera images. A calibration target (GretagMacbeth 
ColorChecker DC) was measured using a bidirectional 
spectrophotometer and imaged. A reconstruction model was 
derived to convert the multi-channel camera data to spectral 
reflectance data for each pixel. [12] The model consists of both 
colorimetric and spectral transformations, which can achieve high 
spectral and colorimetric accuracies simultaneously for a certain 
viewing and illuminating condition. Following camera calibration, 
spectral reflectance as a function of spatial position can be 
estimated for any imaged target. 

For this experiment, the test target was a small oil painting, 
featured with flowers in a blue vase, which was made of Gamblin 
artist oil paints. The following pigments were used: Cadmium 
Yellow Medium, Indian Yellow, Cadmium Red Medium, Venetian 
Red, Quinacridone Red, Phthalocyanine Green, Chromium Oxide 
Green, Cobalt Blue, Phthalocyanine Blue, Ivory Black and 
Titanium White. Reference [4] suggested that the logarithm of the 
absorption and scattering ratio was the most invariant to changes in 
concentration. The log K S( ) spectra of these pigments are plotted 

in Figure. 1. 
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Figure 1 The log K S( ) spectra of ten Gamblin artist oil paints 

Since the resulting spectral image from the two RGB camera 
images was too large (about 1.5 GB), the RGB images were 
cropped and down-sampled by 90%. 

Results and Discussions 

Database Development 
For each pigment, one masstone and two mixture samples 

were prepared according to the concentrations listed in Table I.  
Table I Measured and predicted weight concentrations for each 
pigment mixed with white paint 

Concentrations (Mass, %) Golden Artist Oil 
Pigments #1 #2 #3 #3 Pred. 

Cadmium Yellow Medium 100 51.0 20.0 22.5 

 Indian Yellow 100 52.4 18.5 22.9 

 Cadmium Red Medium 100 51.1 79.6 68.6 

 Venetian Red 100 52.3 78.9 89.0 

 Quinacridone Red 100 50.0 21.4 21.4 

 Phthalo Green 100 52.1 20.5 27.4 

 Chromium Oxide Green 100 60.5 20.4 22.1 

 Cobalt Blue 100 60.3 20.6 21.0 

 Phthalo Blue 100 59.7 20.3 27.1 

 Ivory Black 100 59.2 19.6 24.7 



 

 

The masstone (#1) and one mixture sample (#2) per pigment 
were used to calculate unit absorption and scattering coefficients. 
The other mixture sample (#3) was used to evaluate the accuracy 
of the prediction model. Table I also lists the predicted 
concentrations for these verification mixture samples. The errors 
between measured and predicted concentrations are quite 
reasonable. The concentration errors may result from measurement 
inaccuracy, incomplete mixing, surface non-smoothness and 
limitations of the Kubelka-Munk theory. 

In addition to prediction of concentration, the performance of 
spectral estimation for these mixtures was quantified using three 
metrics. These metrics included RMS spectral error between 
measured and estimated reflectances, CIEDE2000 color difference 
for CIE illuminant D65 and the 2-degree observer, and a 
metameric index from D65 to CIE illuminant A. Both the spectral 
and colorimetric performances were quite well. 
Table II Performance metrics for estimation accuracy of the 
mixture samples (#3) 

Statistics 

Spectral 
% RMS 
Error 

Color 
Difference 
(∆E00 D65) 

Index of 
Metamerism 
(∆E00 D65 -> A) 

Average 1.1 1.0 0.1 

Std. Dev. 0.8 0.6 0.1 

Maximum 3.0 2.1 0.3 

90% Percentile 2.4 1.9 0.3 

Image Segmentation 
The spectral image of the test target was obtained from two 

raw camera RGB images using the reconstruction method 
described in Reference [12].  It was then transformed to a CIELAB 
image for CIE illuminant D65 and the 2-degree observer. 
Unsupervised k-Means clustering method was used to segment the 
CIELAB image into five clusters in a*b* space. The clustering 
process was implemented by the kmeans function in MATLAB. 
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Figure 2 Scatter plot of five segmented clusters in a*b*space 

Figure 2 shows the scatter plot of the five segmented clusters 
in a*b* space. Figure 3 illustrates each segmented image 
separately. The k-Means clustering method successfully segmented 
the image based on colorimetric information. The number of 
clusters was determined to be five through trial-and-error. Four 
clusters were insufficient to separate certain colors. On the other 
hand, six or more clusters provided more detail than was necessary 

for the test target. Cluster 5 consists of all low chroma colors and 
locates in the center of a*b* space (Figure 2). 

   
Original Painting Cluster 1 (Bluish) Cluster 2 (Greenish) 

   
Cluster 3 (Yellowish) Cluster 4 (Reddish) Cluster 5 (low 

Chroma) 

Figure 3 Original image of the oil painting and five segmented images 

Pigment Mapping 
In this small oil painting, only a small portion consisted of 

pure pigments, the majority being mixtures. Several assumptions 
were made: (1) the painting was totally opaque; (2) most mixtures 
were made of only one chromatic pigment with white paint, and 
some mixtures were made of no more than four chromatic 
pigments with white. Because Cluster 5 was somewhat transparent 
and appeared to consist of more than four pigments, it was 
eliminated from the following analysis. 
Table III Selected pigment combinations for each cluster  

Cluster Number 

Pigments 1 2 3 4 

Cadmium Yellow Medium  x x  

 Indian Yellow   x x 

 Cadmium Red Medium    x 

 Venetian Red    x 

 Quinacridone Red    x 

 Phthalocyanine Green  x   

 Chromium Oxide Green  x x  

 Cobalt Blue x    

 Phthalocyanine Blue x    

 Ivory Black     
For each cluster, several candidate pigments were selected 

based on colorimetric information. As listed in Table III, Cluster 1 
contained two blue pigments. For Cluster 2, one yellow pigment 
was included along with two green pigments, as visual inspection 
of the painting indicated the existence of yellow among the 



 

 

dominant green colors. The same conclusion applied to Clusters 3 
and 4. The ivory black was not selected for any cluster except for 
Cluster 5 because its spectrum was flat and spectrally nonselective. 

Nine points on the painting were carefully selected and 
measured with a bidirectional spectrophotometer. In addition, the 
reflectance spectra of these points were estimated from the camera 
model only and from pigment mapping based on spectral imaging. 
Figure 4 compares the estimated spectra from the camera model 
and pigment mapping with in-situ spectrophotometer 
measurements for four chromatic pigments. It can be clearly seen 
that the estimated reflectance spectra from pigment mapping are 
more accurate and much closer to in-situ measurements. The same 
result has been obtained using the simulated camera data in 
reference [3]. It can be concluded that the accuracy of spectral 
imaging is high enough to predict specific pigments and their 
concentrations of each pixel of the painting, and that by 
incorporating pigment information, the accuracy of spectral image 
can be further improved. 
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Figure 4 Measured (solid lines) and estimated spectra from camera model 
(dot-dashed lines) and pigment mapping (dashed lines) of four chromatic 
pigments 

Conclusions 
The CIELAB image of the test target was first segmented 

using K-Means classification in a*b* color space. Within each 
cluster, a subgroup of candidate pigments was selected from a ten- 
pigment database. After that, pigment mapping was implemented 
on a pixel basis using two-constant Kubelka-Munk theory to 
obtain a concentration map for each pigment. This technique 
resulted in quite good performance. By focusing on a subgroup of 
pigments rather than unmixing with the entire pigment database 
for each pixel, the computation efficiency was improved greatly. It 
also proves that spectral imaging techniques have the potential to 
identify pigments and determine their concentrations image-wise. 

The fundamental basis of the technique presented in this 
research is the spectral accuracy of the camera model. The choice 
of calibration target greatly affects estimation accuracy and it is 
critical that the target should span both the spectral and 
colorimetric description of the painting. [5] Since the current 
calibration target (ColorChecker DC) does not satisfy the above 
requirements, better spectral accuracy should be expected with a 
more appropriate target. [13] It is also possible to develop an 

automatic selection routine for candidate pigments instead of the 
manual process used for this research. Finally, it is more common 
that the pigments in a painting are unknown. This problem can be 
solved in two steps: (1) select candidate pigments from a larger 
database; and (2) mapping each pixel using the described 
technique.  
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